Dielectric properties of porous silicon for use as a substrate for the on-chip integration of millimeter-wave devices in the frequency range 140 to 210 GHz
نویسندگان
چکیده
UNLABELLED In this work, the dielectric properties of porous Si for its use as a local substrate material for the integration on the Si wafer of millimeter-wave devices were investigated in the frequency range 140 to 210 GHz. Broadband electrical characterization of coplanar waveguide transmission lines (CPW TLines), formed on the porous Si layer, was used in this respect. It was shown that the dielectric parameters of porous Si (dielectric permittivity and loss tangent) in the above frequency range have values similar to those obtained at lower frequencies (1 to 40 GHz). More specifically, for the samples used, the obtained values were approximately 3.12 ± 0.05 and 0.023 ± 0.005, respectively. Finally, a comparison was made between the performance of the CPW TLines on a 150-μm-thick porous Si layer and on three other radiofrequency (RF) substrates, namely, on trap-rich high-resistivity Si (trap-rich HR Si), on a standard complementary metal-oxide-semiconductor (CMOS) Si wafer (p-type, resistivity 1 to 10 Ω.cm) and on quartz. PACS 84.40.-x; 77.22.Ch; 81.05.Rm.
منابع مشابه
Highly Selective Lowpass Filter with Wide Stopband in Suspended Stripline Technology for Millimeter-wave Diplexer Applications
This paper presents a low loss and high selective lowpass filter which is implemented using suspended stripline (SSL) technology. The proposed structure is comprised of a 13th order generalized Chebyshev lowpass filter which enjoys integrated waveguide-to-SSL transitions. This filter is designed and fabricated to be used as lowpass channel of a U-band diplexer employed in frontend of a U-band d...
متن کاملGallium Phosphide IMPATT Sources for Millimeter-Wave Applications
The potentiality of millimter-wave (mm-wave) double-drift region (DDR) impact avalanche transit time (IMPATT) diodes based on a wide bandgap (WBG) semiconductor material, Gallium Phosphide (GaP) has been explored in this paper. A non-sinusoidal voltage excited (NSVE) large-signal simulation method has been used to study the DC and high frequency characteristics of DDR GaP IMPATTs dsigned to ope...
متن کاملInvestigation of HF/H2O2 Concentration Effect on Structural and Antireflection Properties of Porous Silicon Prepared by Metal-Assisted Chemical Etching Process for Photovoltaic Applications
Porous silicon was successfully prepared using metal-assisted chemical etching method. The Effect of HF/H2O2 concentration in etching solution as an affecting parameter on the prepared porosity type and size was investigated. Field emission electron microscopy (FE-SEM) confirmed that all etched samples had porous structure and the sample which was immersed into HF/H2O2 withmolar ratio of 7/3.53...
متن کاملStructural, Electrical, and impedance spectroscopy studies of Barium substituted nano calcium ferrites synthesized by solution combustion method.
Barium substituted nanocrystalline ferrites with chemical composition BaxCa1-xFe2O4 (x =0.0 to 0.25) BCAF were prepared by solution combustion method. The phase formation of mixed spinal structured ferrites was confirmed by PXRD analysis. The average crystallite size was calculated using Debye-Scherrer formula and it was found to be in the range of 27-44 nm. Surface morphology was analyzed by S...
متن کاملبررسی وابستگی میکروساختارهای سطحی سیلیکان متخلخل و خواص اپتیکی آن
We have studied the effect of increasing porosity and its microstructure surface variation on the optical and dielectric properties of porous silicon. It seems that porosity, as the surface roughness within the range of a few microns, shows quantum effect in the absorption and reflection process of porous silicon. Optical constants of porous silicon at normal incidence of light with wavelengt...
متن کامل